Math in AES

AES

Advanced Encryption Standard

ref: Galois Field lecture

Galois Field (a.k.a Finite Field)

F.F(Finite Field) is exist with $P^m$

p: prime number ($\mathbb{P}$)
m: integer ($\mathbb{Z}$)
GF: Galois feld

Prime Field Arithmetic

$GF(P) = { 0,1 …, P-1 }$

Extension Field

$GF(P^m)\quad {\scriptsize (m > 1)}$
but AES use $m = 8$

ADD

$GF(2^3) = GF(8)$
$A(x) = a_2x^2 + a_1x + a_0 = (a_2,a_1, a_0)$
$GF(2^3)$
$ = { 0, 1, x, x+1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1 }$
Addition and Subtraction
use regular polynomial add or subtraction, where the coefficients are compute in GF(2)

$GF(2^3)$
$A(x) = x^2 + x + 1$
$B(x) = x^2 \qquad+ 1 $
——————————-
$ = (1+1)x^2 + x + (1+1)$
$ = x $

Multiply img Intuition: Just do regular polynomial multiplication. $GF(2^3)$
$P(x) = x^3 + x + 1$
$A \cdot B = (x^2+x+1)(x^2 + 1)$
$= x^4 + x^3 + x^2 + x^2 +x + 1 $
$= x^4 + x^3 + (1+1)x^2 +x +1 $
$\neq x^4 + x^3 + x + 1 = C’(x) $
$\because x^4 + x^3 + x + 1 \notin GF(2^3)$
solution : reduce \(C'(x)\) modulo polynomial that “behaves like a prime” thes are called irreducible polynomial
$( x^4 + x^3 + x + 1) \div (x^3+x+1) = x+1 $
$\equiv x^2 + x \equiv A \cdot B \mod P(x)$
AES Irreducible polynomial $P(x) = x^8 + x^4 + x^3 + x +1$

Discussion and feedback